FKeras: A Sensitivity Analysis Tool for Edge Neural Networks

Olivia Weng, **Andres Meza**, Quinlan Bock, Benjamin Hawks, Javier Campos, Nhan Tran, Javier Duarte, Ryan Kastner

Presented on November 2nd, 2023 at Fast ML for Science @ ICCAD 2023

• Edge NNs can be sensitive creatures

• Edge NNs can be sensitive creatures

• They are put through a lot:

• Edge NNs can be sensitive creatures

- They are put through a lot:
 - Pruning
 - \circ Quantization
 - Hardware faults

• Edge NNs can be sensitive creatures

- They are put through a lot:
 - Pruning
 - \circ Quantization
 - Hardware faults

• Edge NNs can be sensitive creatures

- They are put through a lot:
 - Pruning
 - \circ Quantization
 - Hardware faults

When do hardware faults occur?

Example: LHC's CMS Data Processing Pipeline

Ref: https://indico.fnal.gov/event/46746/contributions/210450/attachments/141293/177902/hirschauer_AE_CPAD_19mar2020.pdf

Example: LHC's CMS Data Processing Pipeline

How does the ECON-T Autoencoder **tolerate** radiation?

• ECON-T employs triple modular redundancy (TMR) to its registers

• ECON-T employs triple modular redundancy (TMR) to its registers

Ref: Di Guglielmo et al. A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC. IEEE Trans. Nucl. Sci.'21.

• ECON-T employs triple modular redundancy (TMR) to its registers

Ref: Di Guglielmo et al. A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC. IEEE Trans. Nucl. Sci.'21.

• ECON-T employs triple modular redundancy (TMR) to its registers

Ref: Di Guglielmo et al. A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC. IEEE Trans. Nucl. Sci.'21.

• ECON-T employs triple modular redundancy (TMR) to its registers

Ref: Di Guglielmo et al. A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC. IEEE Trans. Nucl. Sci.'21.

• ECON-T employs triple modular redundancy (TMR) to its registers

TMR incurs ≥200% area overhead!

Ref: Di Guglielmo et al. A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC. IEEE Trans. Nucl. Sci.'21.

How can we **reduce** radiation tolerance **costs**?

Observation: Tolerance only applied to hardware

Observation: Tolerance only applied to hardware

What about **software**?

How should we assess the **fault sensitivity** of NN **software**?

• A library that assesses the fault sensitivity of (Q)Keras models

- A library that assesses the fault sensitivity of (Q)Keras models
- Current features include:
 - Bit-level fault injection with fine-grained control
 - Bit-level sensitivity metrics for ranking weight bits

- A library that assesses the fault sensitivity of (Q)Keras models
- Current features include:
 - Bit-level fault injection with fine-grained control
 - Bit-level sensitivity metrics for ranking weight bits

Bit-level sensitivity metrics for ranking weight bits (without fault injection)

- A library that assesses the fault sensitivity of (Q)Keras models
- Current features include:
 - Bit-level fault injection with fine-grained control
 - Bit-level sensitivity metrics for ranking weight bits

Bit-level fault injection with fine-grained control

Bit-level sensitivity metrics for ranking weight bits (without fault injection)

Small Pareto (Total Weight Bits: 10,240)

• We perform an exhaustive, bit-level fault injection campaign for 3 Pareto-optimal ECON-T models

• Conceptually, each fault injection campaign:

• We perform an exhaustive, bit-level fault injection campaign for 3 Pareto-optimal ECON-T models

• Conceptually, each fault injection campaign:

1. Generates X "faulty" variants by flipping a single weight bit

• We perform an exhaustive, bit-level fault injection campaign for 3 Pareto-optimal ECON-T models

• Conceptually, each fault injection campaign:

1. Generates X "faulty" variants by flipping a single weight bit

2. Measures the new EMD on a set of test inputs

• We perform an exhaustive, bit-level fault injection campaign for 3 Pareto-optimal ECON-T models

• Conceptually, each fault injection campaign:

1. Generates X "faulty" variants by flipping a single weight bit 2. Measures the new EMD on a set of test inputs

3. Determines the weight bits to protect

Fault injection campaigns are expensive...

Fault injection campaigns are expensive...

Can we **quantify** fault sensitivity a priori?

- A library that assesses the fault sensitivity of (Q)Keras models
- Current features include:
 - Bit-level fault injection with fine-grained control
 - Bit-level sensitivity metrics for ranking weight bits

Bit-level sensitivity metrics for ranking weight bits (without fault injection)

- A library that assesses the fault sensitivity of (Q)Keras models
- Current features include:
 - Bit-level fault injection with fine-grained control
 - Bit-level sensitivity metrics for ranking weight bits

Bit-level fault injection with fine-grained control

Bit-level sensitivity metrics for ranking weight bits (without fault injection)

- We provide bit-level sensitivity metrics for ranking weight bits from high to low sensitivity
 - High sensitivity: New EMD >> Original EMD
 - Low sensitivity: New EMD ≤ Original EMD

- We provide bit-level sensitivity metrics for ranking weight bits from high to low sensitivity
 - High sensitivity: New EMD >> Original EMD
 - Low sensitivity: New EMD ≤ Original EMD
- Example: Assume we have a model with two layers which each have one 3-bit weight

Original Model

- We provide bit-level sensitivity metrics for ranking weight bits from high to low sensitivity
 - High sensitivity: New EMD >> Original EMD
 - Low sensitivity: New EMD ≤ Original EMD
- Example: Assume we have a model with two layers which each have one 3-bit weight
- Ranking Metric:
 - Oracle (requires fault injection)

Ranking Metric

Original Model

High \rightarrow Low Ranking

- We provide bit-level sensitivity metrics for ranking weight bits from high to low sensitivity
 - High sensitivity: New EMD >> Original EMD
 - Low sensitivity: New EMD ≤ Original EMD
- Example: Assume we have a model with two layers which each have one 3-bit weight
- Ranking Metric:
 - Oracle (requires fault injection)
 - Random

- We provide bit-level sensitivity metrics for ranking weight bits from high to low sensitivity
 - High sensitivity: New EMD >> Original EMD
 - Low sensitivity: New EMD ≤ Original EMD
- Example: Assume we have a model with two layers which each have one 3-bit weight
- Ranking Metric:
 - Oracle (requires fault injection)
 - Random
 - Most significant bit \rightarrow least significant bit

- We provide bit-level sensitivity metrics for ranking weight bits from high to low sensitivity
 - High sensitivity: New EMD >> Original EMD
 - Low sensitivity: New EMD ≤ Original EMD
- Example: Assume we have a model with two layers which each have one 3-bit weight
- Ranking Metric:
 - Oracle (requires fault injection)
 - Random
 - Most significant bit \rightarrow least significant bit
 - Gradient (computed at weight level)

- We provide bit-level sensitivity metrics for ranking weight bits from high to low sensitivity
 - High sensitivity: New EMD >> Original EMD
 - Low sensitivity: New EMD ≤ Original EMD
- Example: Assume we have a model with two layers which each have one 3-bit weight
- Ranking Metric:
 - Oracle (requires fault injection)
 - Random
 - Most significant bit \rightarrow least significant bit
 - Gradient (computed at weight level)
 - Hessian (computed at weight level)

- We provide bit-level sensitivity metrics for ranking weight bits from high to low sensitivity
 - High sensitivity: New EMD >> Original EMD
 - Low sensitivity: New EMD ≤ Original EMD
- How do our metrics compare with a perfect but costly oracle ranking?

- We provide bit-level sensitivity metrics for ranking weight bits from high to low sensitivity
 - High sensitivity: New EMD >> Original EMD
 - Low sensitivity: New EMD ≤ Original EMD
- How do our metrics compare with a perfect but costly oracle ranking?

- We provide bit-level sensitivity metrics for ranking weight bits from high to low sensitivity
 - High sensitivity: New EMD >> Original EMD
 - Low sensitivity: New EMD ≤ Original EMD
- How do our metrics compare with a perfect but costly oracle ranking?

- We provide bit-level sensitivity metrics for ranking weight bits from high to low sensitivity
 - High sensitivity: New EMD >> Original EMD
 - Low sensitivity: New EMD ≤ Original EMD
- How do our metrics compare with a perfect but costly oracle ranking?

- We provide bit-level sensitivity metrics for ranking weight bits from high to low sensitivity
 - High sensitivity: New EMD >> Original EMD
 - Low sensitivity: New EMD ≤ Original EMD
- How do our metrics compare with a perfect but costly oracle ranking?

- We provide bit-level sensitivity metrics for ranking weight bits from high to low sensitivity
 - High sensitivity: New EMD >> Original EMD
 - Low sensitivity: New EMD ≤ Original EMD
- How do our metrics compare with a perfect but costly oracle ranking?

- We provide bit-level sensitivity metrics for ranking weight bits from high to low sensitivity
 - High sensitivity: New EMD >> Original EMD
 - Low sensitivity: New EMD ≤ Original EMD
- How do our metrics compare with a perfect but costly oracle ranking?

- We provide bit-level sensitivity metrics for ranking weight bits from high to low sensitivity
 - High sensitivity: New EMD >> Original EMD
 - Low sensitivity: New EMD ≤ Original EMD
- How do our metrics compare with a perfect but costly oracle ranking?

FKeras: Future Work

- We want to use FKeras to:
 - Analyze more edge NNs and datasets
 - How much can our metrics speed up fault injection campaigns?
 - Perform NN design space exploration that considers fault sensitivity using our metrics
 - How does fault sensitivity interact with performance, area, etc?

Thank you! Questions?

Thank you! Questions?

FKeras Repo: https://github.com/KastnerRG/fkeras

Backup

How do our metrics compare with a perfect ranking?

How do our metrics compare with a perfect ranking?

How to use bit-level sensitivity rankings?

How to use bit-level sensitivity rankings?

• Speed up fault injection campaigns

How to use bit-level sensitivity rankings?

• Speed up fault injection campaigns

• Design space exploration